Муниципальное бюджетное общеобразовательное учреждение «Новоселовская средняя общеобразовательная школа N 5» имени героя Советского Союза В.И. Русинова

PACCMOTPEHO	СОГЛАСОВАНО	УТВЕРЖДЕНО	
Руководитель ШМО	Завуч по УВР	Директор	
Иванова В.Г.	Каминская Ю.А.	Целитан С.В.	
Протокол №1		Приказ №217	
от «20» августа 2024 г.	от «20» августа 2024 г.	от «02» сентября 2024 г.	

Рабочая программа курса внеурочной деятельности «Методы решения физических задач.Механика. Молекулярная физика»

(общеинтеллектуальное направление)

Учитель физики Иванова Валентина Геннадьевна

На 68 занятий по 45 мин

Сроки обучения: сентябрь - май (1 раз в неделю,

среда)

Для 10 классов

Пояснительная записка

Рабочая программа по курсу «Методы решения физических задач» на уровне среднего общего образования (базовый уровень изучения предмета) составлена на основе положений и требований к результатам освоения основной образовательной программы, представленных в Федеральном государственном образовательном стандарте среднего общего образования (утв. приказом Министерства образования и науки РФ от 17 мая 2012 г. N 413 со всемиизменениями), с учётом федеральной рабочей программы воспитания и Концепции преподавания учебного предмета «Физика» в образовательных организациях Российской Федерации, Методических рекомендаций по созданию и функционированию общеобразовательных организациях, расположенных в сельской местности и малых городах, центров образования естественно-научной и технологической направленностей («Точка роста») (Утверждены распоряжением Министерства просвещения Российской Федерации от 12 января 2021 г. № Р-6).

Содержание Программы курса направлено на формирование естественно-научной картины мира учащихся 10 класса при обучении их физике на базовом уровне на основе системно-деятельностного подхода. Программа соответствует требованиям ФГОС СОО к планируемым личностным, предметным и метапредметным результатам обучения, а также учитывает необходимость реализации межпредметных связей физики с естественно-научными учебными предметами. В ней определяются основные цели изучения физики на уровне среднего общего образования, планируемые результаты освоения курса физики: личностные, метапредметные, предметные (на базовом уровне). Программа включает: планируемые результаты освоения курса физики на базовом уровне, в том числе предметные результаты; содержание учебного курса; тематическое планирование с указанием количествачасов на изучение каждой темы.

Курс разработан для систематизации самостоятельного ученического эксперимента, включающего фронтальные ученические опыты при изучении нового материала, лабораторные работы и работы практикума. Физический практикум реализуется как интеграция работ практикума в систему лабораторных работ, которые проводятся в процессе изучения раздела (темы). Большое внимание уделяется решению расчётных и качественных задач. При этом для расчётных задач приоритетом являются задачи с явно заданной и неявно заданной физической моделью, позволяющие применять изученные законы и закономерности как из одного раздела курса, так и интегрируя применение знаний из разных разделов. Для качественных задач приоритетом являются задания на объяснение / предсказание протекания физических явлений и процессов в окружающей жизни, требующие выбора физической модели для ситуации практико-ориентированного характера.

Цели изучения физики

Основными целями изучения курса «Практикум по физике» в общем образовании являются:

- формирование интереса и стремления обучающихся к научному изучению природы, развитие их интеллектуальных и творческих способностей;
- развитие представлений о научном методе познания и формирование исследовательского отношения к окружающим явлениям;
- формирование научного мировоззрения как результата изучения основ строения материи и фундаментальных законов физики;
- формирование умений объяснять явления с использованием физических знаний и научных доказательств;
- формирование представлений о роли физики для развития других естественных наук, техники и технологий;
- формирование представлений о роли физики для развития других естественных наук, техники и технологий;

- развитие представлений о возможных сферах будущей профессиональной деятельности, связанных с физикой, подготовка к дальнейшему обучению в этом направлении.
 Достижение этих целей обеспечивается решением следующих задач в процессе изучения данного курса на уровне среднего общего образования:
- приобретение системы знаний об общих физических закономерностях, законах, теориях, включая механику, молекулярную физику, электродинамику, квантовую физику и элементы астрофизики;
- формирование умений применять теоретические знания для объяснения физических явлений в природе и для принятия практических решений в повседневной жизни;
- освоение способов решения различных задач с явно заданной физической моделью, задач, подразумевающих самостоятельное создание физической модели, адекватной условиям задачи;
- понимание физических основ и принципов действия технических устройств и технологических процессов, их влияния на окружающую среду;
- овладение методами самостоятельного планирования и проведения физических экспериментов, анализа и интерпретации информации, определения достоверности полученного результата;
- создание условий для развития умений проектно-исследовательской, творческой деятельности.

Рабочая программа разработана с учетом имеющегося на базе школы центра «Точка роста». Цифровая лаборатория «Физика» с широким спектром цифровых датчиков позволяетучащимся знакомиться с параметрами физического эксперимента не только на качественном, но и на количественном уровне. В процессе формирования экспериментальных умений по физике учащийся учится представлять информацию об исследовании в четырёх видах:

- в вербальном: описывать эксперимент, создавать словесную модель эксперимента, фиксировать внимание на измеряемых физических величинах, терминологии;
- в табличном: заполнять таблицы данных, лежащих в основе построения графиков (при этом у учащихся возникает первичное представление о масштабах величин);
- в графическом: строить графики по табличным данным, что позволяет перейти к выдвижению гипотез о характере зависимости между физическими величинами (при этом учитель показывает преимущество в визуализации зависимостей между величинами, наглядность и многомерность);
- в аналитическом (в виде математических уравнений): приводить математическое описание взаимосвязи физических величин, математическое обобщение полученных результатов.

Для проведения текущего контроля используются следующие средства проверки и оценки: устный ответ, практическая работа, лабораторная работа, учебный проект или исследование, контрольная работа, тест. Промежуточная аттестация проводится на основе текущего контроля.

Место предмета в учебном плане

Курс «Методы решения физических задач» в 10 классе изучается на базовом уровне. Согласно учебному плану школы, на его изучение отводится 68 часов за один год обучения, из расчета 2 учебных часа в неделю в 10 классе. Этот курс является дополнением учебного предмета «Физика» в 10 классе. Время, отводимое на него используется учителем для изучения вопросов, связанных с естественно-научным профилем обучения. За счет часов курса увеличивается учебная нагрузка, отводимая на изучение механики, молекулярной физики и электродинамики, за счёт расширения числа практических работ исследовательского характера и уроков решения качественных и расчётных задач.

Планируемые результаты изучения учебного предмета

Личностные результаты:

Гражданское воспитание:

- сформированность гражданской позиции обучающегося как активного и ответственногочлена российского общества;
- принятие традиционных общечеловеческих гуманистических и демократическихценностей;
- готовность вести совместную деятельность в интересах гражданского общества, участвовать в самоуправлении в школе и детско-юношеских организациях;
- умение взаимодействовать с социальными институтами в соответствии с их функциями иназначением;
- готовность к гуманитарной и волонтёрской деятельности. Патриотическое воспитание:
- сформированность российской гражданской идентичности, патриотизма;
- ценностное отношение к государственным символам; достижениям российских учёных вобласти физики и технике.

Духовно-нравственное воспитание:

- сформированность нравственного сознания, этического поведения;
- способность оценивать ситуацию и принимать осознанные решения, ориентируясь наморально-нравственные нормы и ценности, в том числе в деятельности учёного;
- осознание личного вклада в построение устойчивого будущего.

Эстетическое воспитание:

— эстетическое отношение к миру, включая эстетику научного творчества, присущего физической науке.

Трудовое воспитание:

- интерес к различным сферам профессиональной деятельности, в том числе связанным с физикой и техникой, умение совершать осознанный выбор будущей профессии и реализовывать собственные жизненные планы;
- готовность и способность к образованию и самообразованию в области физики на протяжении всей жизни.

Экологическое воспитание:

- сформированность экологической культуры, осознание глобального характера экологических проблем;
- планирование и осуществление действий в окружающей среде на основе знания целей устойчивого развития человечества;
- расширение опыта деятельности экологической направленности на основе имеющихся знаний по физике.

Ценности научного познания:

- сформированность мировоззрения, соответствующего современному уровню развития физической науки;
- осознание ценности научной деятельности, готовность в процессе изучения физики осуществлять проектную и исследовательскую деятельность индивидуально и в группе.
- В процессе достижения личностных результатов освоения программы среднего общего образования по физике у обучающихся совершенствуется эмоциональный интеллект, предполагающий сформированность:
- самосознания, включающего способность понимать своё эмоциональное состояние, видеть направления развития собственной эмоциональной сферы, быть уверенным в себе;
- саморегулирования, включающего самоконтроль, умение принимать ответственность за своё поведение, способность адаптироваться к эмоциональным изменениям и проявлять гибкость, быть открытым новому;

- внутренней мотивации, включающей стремление к достижению цели и успеху, оптимизм, инициативность, умение действовать, исходя из своих возможностей;
- эмпатии, включающей способность понимать эмоциональное состояние других, учитывать его при осуществлении общения, способность к сочувствию и сопереживанию;
- социальных навыков, включающих способность выстраивать отношения с другими людьми, заботиться, проявлять интерес и разрешать конфликты.

Метапредметные результаты:

Универсальные познавательные действия.

Базовые логические действия:

- самостоятельно формулировать и актуализировать проблему, рассматривать её всесторонне;
- определять цели деятельности, задавать параметры и критерии их достижения;
- выявлять закономерности и противоречия в рассматриваемых физических явлениях;
- разрабатывать план решения проблемы с учётом анализа имеющихся материальных и нематериальных ресурсов;
- вносить коррективы в деятельность, оценивать соответствие результатов целям, оценивать риски последствий деятельности; координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;
- развивать креативное мышление при решении жизненных проблем. Базовые исследовательские действия:
- владеть научной терминологией, ключевыми понятиями и методами физической науки;
 владеть навыками учебно-исследовательской и проектной деятельности в области физики;
 способностью и готовностью к самостоятельному поиску методов решения задач физического содержания, применению различных методов познания;
 - владеть видами деятельности по получению нового знания, его интерпретации, преобразованию и применению в различных учебных ситуациях, в том числе при создании учебных проектов в области физики;
 - выявлять причинно-следственные связи и актуализировать задачу, выдвигать гипотезу её решения, находить аргументы для доказательства своих утверждений, задавать параметры и критерии решения;
 - анализировать полученные в ходе решения задачи результаты, критически оценивать их достоверность, прогнозировать изменение в новых условиях;
 - ставить и формулировать собственные задачи в образовательной деятельности, в том числе при изучении физики;
 - давать оценку новым ситуациям, оценивать приобретённый опыт;
 - уметь переносить знания по физике в практическую область жизнедеятельности;
 - уметь интегрировать знания из разных предметных областей;
 - выдвигать новые идеи, предлагать оригинальные подходы и решения; ставить проблемыи задачи, допускающие альтернативные решения.

Работа с информацией:

- владеть навыками получения информации физического содержания из источников разных типов, самостоятельно осуществлять поиск, анализ, систематизацию и интерпретацию информации различных видов и форм представления;
- оценивать достоверность информации;
- использовать средства информационных и коммуникационных технологий в решении когнитивных, коммуникативных и организационных задач с соблюдением требований

эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;

— создавать тексты физического содержания в различных форматах с учётом назначения информации и целевой аудитории, выбирая оптимальную форму представления и визуализации.

Универсальные коммуникативные действия.

Общение:

- осуществлять общение на уроках физики и во внеурочной деятельности;
- распознавать предпосылки конфликтных ситуаций и смягчать конфликты;
- развёрнуто и логично излагать свою точку зрения с использованием языковых средств. Совместная деятельность:
- понимать и использовать преимущества командной и индивидуальной работы;
- выбирать тематику и методы совместных действий с учётом общих интересов и возможностей каждого члена коллектива;
- принимать цели совместной деятельности, организовывать и координировать действия по её достижению: составлять план действий, распределять роли с учётом мнений участников, обсуждать результаты совместной работы;
- оценивать качество своего вклада и каждого участника команды в общий результат по разработанным критериям;
- предлагать новые проекты, оценивать идеи с позиции новизны, оригинальности, практической значимости;
- осуществлять позитивное стратегическое поведение в различных ситуациях, проявлять творчество и воображение, быть инициативным.

Универсальные регулятивные действия.

Самоорганизация:

- самостоятельно осуществлять познавательную деятельность в области физики и астрономии, выявлять проблемы, ставить и формулировать собственные задачи;
- самостоятельно составлять план решения расчётных и качественных задач, план выполнения практической работы с учётом имеющихся ресурсов, собственных возможностей и предпочтений;
- давать оценку новым ситуациям;
- расширять рамки учебного предмета на основе личных предпочтений;
- делать осознанный выбор, аргументировать его, брать на себя ответственность за решение;
- оценивать приобретённый опыт;
- способствовать формированию и проявлению эрудиции в области физики, постоянно повышать свой образовательный и культурный уровень.

Самоконтроль:

- давать оценку новым ситуациям, вносить коррективы в деятельность, оценивать соответствие результатов целям;
- владеть навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований; использовать приёмы рефлексии для оценки ситуации, выбора верного решения;
- уметь оценивать риски и своевременно принимать решения по их снижению;
- принимать мотивы и аргументы других при анализе результатов деятельности. Принятие себя и других:

- принимать себя, понимая свои недостатки и достоинства;
- принимать мотивы и аргументы других при анализе результатов деятельности;
- признавать своё право и право других на ошибки.

Предметные

результаты.10 класс.

В процессе изучения курса физики базового уровня в 10 классе ученик научится:

- демонстрировать на примерах роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей;
- учитывать границы применения изученных физических моделей: материальная точка, инерциальная система отсчёта, абсолютно твёрдое тело, идеальный газ; модели строения газов, жидкостей и твёрдых тел, точечный электрический заряд при решении физических задач;
- распознавать физические явления (процессы) и объяснять их на основе законов механики, молекулярно-кинетической теории строения вещества и электродинамики: равномерное и равноускоренное прямолинейное движение, свободное падение тел, движениепо окружности, инерция, взаимодействие тел; диффузия, броуновское движение, строение жидкостей и твёрдых тел, изменение объёма тел при нагревании (охлаждении), тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, повышение давления газа при его нагревании в закрытом сосуде, связь между параметрами состояния газа в изопроцессах; электризация тел, взаимодействие зарядов, электрическая проводимость, тепловое, световое, химическое, магнитное действия тока;
- описывать механическое движение, используя физические величины: координата, путь, перемещение, скорость, ускорение, масса тела, сила, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы, находить формулы, связывающие данную физическую величину с другими величинами;
 - описывать изученные тепловые свойства тел и тепловые явления, используя физические величины: давление газа, температура, средняя кинетическая энергия хаотического движения молекул, среднеквадратичная скорость молекул, количество теплоты, внутренняя энергия, работа газа, коэффициент полезного действия теплового двигателя; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы, находить формулы, связывающие данную физическую величину с другими величинам;
 - описывать изученные электрические свойства вещества, электрические явления (процессы) и электрическую проводимость различных сред, используя физические величины: электрический заряд, электрическое поле, напряжённость поля, потенциал, разность потенциалов, сила тока, электрическое напряжение, электрическое сопротивление, ЭДС, работа тока; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы; указывать формулы, связывающие данную физическую величину с другими величинами;
 - анализировать физические процессы и явления, используя физические законы и принципы: закон всемирного тяготения, І, ІІ и ІІІ законы Ньютона, закон сохранения механической энергии, закон сохранения импульса, принцип суперпозиции сил, принцип равноправия инерциальных систем отсчёта; молекулярно-кинетическую теорию строения вещества, газовые законы, связь средней кинетической энергии теплового движения

молекул с абсолютной температурой, первый закон термодинамики; закон сохранения электрического

заряда, закон Кулона, закон Ома, законы последовательного и параллельного соединения проводников, закон Джоуля—Ленца; при этом различать словесную формулировку закона, его математическое выражение и условия (границы, области) применимости;

- объяснять основные принципы действия машин, приборов и технических устройств; различать условия их безопасного использования в повседневной жизни;
- выполнять эксперименты по исследованию физических явлений и процессов с использованием прямых и косвенных измерений: при этом формулировать проблему/задачуи гипотезу учебного эксперимента; собирать установку из предложенного оборудования; проводить опыт и формулировать выводы;
- осуществлять прямые и косвенные измерения физических величин; при этом выбирать оптимальный способ измерения и использовать известные методы оценки погрешностей измерений;
- исследовать зависимости между физическими величинами с использованием прямых измерений: при этом конструировать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования;
- соблюдать правила безопасного труда при проведении исследований в рамках учебного эксперимента, учебно-исследовательской и проектной деятельности с использованием измерительных устройств и лабораторного оборудования;
- решать расчётные задачи с явно заданной физической моделью, используя физические законы и принципы; на основе анализа условия задачи выбирать физическую модель, выделять физические величины и формулы, необходимые для её решения, проводить расчёты и оценивать реальность полученного значения физической величины;
 - решать качественные задачи: выстраивать логически непротиворечивую цепочку рассуждений с опорой на изученные законы, закономерности и физические явления;
 - использовать при решении учебных задач современные информационные технологии для поиска, структурирования, интерпретации и представления учебной и научнопопулярной информации, полученной из различных источников; критически анализировать получаемую информацию;
 - приводить примеры вклада российских и зарубежных учёных-физиков в развитие науки, объяснение процессов окружающего мира, в развитие техники и технологий;
 - использовать теоретические знания по физике в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
 - работать в группе с выполнением различных социальных ролей, планировать работу группы, рационально распределять обязанности и планировать деятельность в нестандартных ситуациях, адекватно оценивать вклад каждого из участников группы в решение рассматриваемой проблемы.

Содержание учебного предмета

Правила и приемы решения физических задач (2 ч)

Что такое физическая задача. Физическая теория и решение задач. Составление физических задач. Основные требования к составлению задач. Общие требования при решении физических задач. Выполнение плана решения задачи. Анализ решения и оформление решения. Типичные недостатки при решении и оформлении решения задачи. Различные приемы и способы решения: геометрические приемы, алгоритмы, аналогии. Методы размерностей, графические решения, метод графов.

Операции над векторными величинами (2ч)

Скалярные и векторные величины. Действия над векторами. Задание вектора. Умножение вектора на скаляр. Сложение векторов. Проекции вектора на координатные оси и действия над векторами. Проекции суммы и разности векторов.

Равномерное движение. (3 ч)

Перемещение. Скорость. Прямолинейное равномерное движение. Графическое представление движения. Средняя путевая и средняя скорость по перемещению. Мгновенная скорость. Относительность механического движения. Формула сложения скоростей.

Одномерное равнопеременное движение (3 ч)

Ускорение. Равноускоренное движение. Равнозамедленное и равноускоренное движение. Перемещение при равноускоренном движении. Свободное падение. Ускорение свободного падения. Начальная скорость. Движение тела брошенного вертикально вверх.

Двумерное равнопеременное движение (3 ч)

Движение тела брошенного под углом к горизонту. Определение дальности полета, времени полета. Максимальная высота подъема тела при движении под углом к горизонту. Время подъема до максимальной высоты. Скорость в любой момент движения. Уравнение траектории движения.

Динамика материальной точки. Поступательное движение (4 ч)

Координатный метод решения задач по механике.

Движение материальной точки по окружности (3 ч)

Период обращения и частота обращения. Циклическая частота. Угловая скорость.

Перемещение и скорость при криволинейном движении. Центростремительное ускорение. Закон Всемирного тяготения.

Импульс. Закон сохранения импульса (4 ч)

Импульс тела. Импульс силы. Явление отдачи. Замкнутые системы. Абсолютно упругое и неупругое столкновение.

Работа и энергия в механике. Закон сохранения механической энергии (5 ч)

Потенциальная и кинетическая энергия. Полная механическая энергия.

Статика и гидростатика (2 ч)

Условия равновесия тел. Момент силы. Центр тяжести тела. Виды равновесия тела. Давление в жидкости. Закон Паскаля. Гидравлическийпресс. Сила Архимеда. Вес тела в жидкости. Условия плавания тел. Несжимаемая жидкость.

Решение задач ЕГЭ по теме «Механика» (3 ч)

Основы молекулярно-кинетической теории (4 ч)

Количество вещества. Масса и размер молекул. Основное уравнение МКТ. Энергия теплового движения молекул. Зависимость давления газаот концентрации молекул и температуры. Скорость молекул газа. Уравнение состояния идеального газа. Изопроцессы.

Основы термодинамики (5 ч)

Внутренняя энергия одноатомного газа. Работа и количество теплоты. Первый закон термодинамики. Адиабатный процесс. Изменениевнутренней энергии в процессе совершения работы. Тепловые двигатели.

Свойства паров. Влажность воздуха.

Электрическое поле (5 ч)

Закон Кулона. Напряженность поля. Проводники в электрическом поле. Поле заряженного шара и пластины. Энергия заряженного тела вэлектрическом поле. Разность потенциалов. Электроемкость конденсатора. Энергия заряженного конденсатора.

Законы постоянного тока (5 ч)

Сила тока. Сопротивление. Закон Ома. Работа и мощность тока. Электродвижущая сила. Закон Ома для замкнутой цепи. Законы Кирхгофа.

Электромагнитные колебания и волны (7 ч)

Магнитное поле тока. Магнитная индукция. Магнитный поток. Закон Ампера. Сила Лоренца. Магнитные свойства вещества. Закон электромагнитной индукции. Различные свойства электромагнитных волн: скорость, отражение, преломление, интерференция, дифракция, поляризация. Геометрическая оптика: зеркала, оптические схемы.

Решение вариантов ЕГЭ (8 ч)

Тематическое планирование

No	Тема занятий	Кол-во	Дата		
п/п		часов	план	факт	примечания
Правила и приемы решения					
физических задач (2 часа)					
1	Общие требования при решении физических	1	06.09		
	задач.				
2	Различные приемы и способы решения.	1	13.09		
Операции над векторными					
величинами (2 часа)					
3	Скалярные и векторные величины.	1	20.09		
4	Действия с векторами. Проекции вектора на оси	1	27.09		
координат.					
Равномерное движение (3 часа)					
5	Прямолинейное равномерное движение.	1	04.10		
6	Средняя скорость.	1	11.10		
7	Мгновенная скорость.	1	18.10		
Закон сложения скоростей (3 часа)					
8	Относительность движения.	1	25.10		
9	Движение с разных точек зрения.	1	8.11		
10	Закон сложения скоростей.	1	15.11		
Одномерное равнопеременное					
движение (3 часа)					
11	Равнопеременное движение.	1	22.11		
12	Перемещение при равноускоренном движении.	1	28.11		
13	Свободное падение. Ускорение свободного	1	05.12		
	падения.				
Двумерное равнопеременное					
движение (3 часа)					
14	Движение тела брошенного под углом к	1	12.12		
	горизонту.				
15	Лаксимальная высота подъема тела при	1	19.12		
13	движении под углом к	1			
	горизонту.				
16	Уравнение траектории движении.	1	26.12		

Описание материально-технического, учебно-методического и информационного обеспечения образовательного процесса

УМК «Физика»

- Физика. 10 класс. (базовый уровень). Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. (подред. Парфентьевой Н.А.)
- Физика. 10 класс. Электронное приложение (DVD) к учебнику Мякишева Г.Я., Буховцева Б.Б., Сотского Н.Н. (под ред. Парфентьевой Н.А.)
- Физика. 11 класс. (базовый уровень). Мякишев Г.Я., Буховцев Б.Б., Чаругин В.М.(подред. Парфентьевой Н.А.)
- Физика. 11 класс. Электронное приложение (DVD) к учебнику Мякишева Г.Я.,Буховцева Б.Б., Чаругина В.М. (под ред. Парфентьевой Н.А.)
 - Цифровая лаборатория «Физика»

Электронные образовательные ресурсы

Ссылки на интернет рессурсы.

- 1. http://experiment.edu.ru/ коллекция видеоэкспериментов федерального портала общего образования
- 2. http://school-collection.edu.ru/ коллекция образовательных ресурсов для школы
- 3. http://ntpo.com/physics/opening.shtml открытия в физике
- 4. http://physics.nad.ru/physics.htm анимация физических процессов
- 5. http://ege.edu.ru/ федеральный портал единого государственного экзамена
- 6. https://sdamgia.ru/ образовательный портал для подготовки к экзаменам.

Мультимедиа ресурсы

Электронные уроки и тесты: Движение и взаимодействие тел. Движение и силы. - ЗАО "Просвещение – МЕДИА"

Электронные уроки и тесты: Работа. Мощность. Энергия. Гравитация. - ЗАО Просвещение Электронные уроки и тесты: Молекулярная структура материи. Внутренняя энергия. - ЗАО "Просвещение – МЕДИА"

Электронные уроки и тесты: Электрические поля. Магнитные поля. - ЗАО "Просвещение – МЕДИА"

Электронные уроки и тесты: Электрический ток. Получение и передача электроэнергии. - ЗАО "Просвещение – МЕДИА"

Электронные уроки и тесты: Свет. Оптические явления. Колебания и волны. - 3AO"Просвещение – МЕДИА"

Электронные уроки и тесты: Земля и ее место во Вселенной. Элементы атомной физики. - 3AO "Просвещение – MEДИА"

Физика. Электричество. Виртуальная лаборатория.

Физика. Волновая оптика. Комплект компьютерных моделей.